翻訳と辞書
Words near each other
・ Von Mach Site
・ Von Magnet
・ Von Magnus phenomenon
・ Von Mangoldt function
・ Von Mansfield
・ Von Maur
・ Von McDade
・ Von McDaniel
・ Von Meck
・ Von Meyer
・ Von Miller
・ Von Minutoli
・ Von Mises
・ Von Mises distribution
・ Von Mises yield criterion
Von Mises–Fisher distribution
・ Von Neumann (crater)
・ Von Neumann (disambiguation)
・ Von Neumann algebra
・ Von Neumann architecture
・ Von Neumann bicommutant theorem
・ Von Neumann cardinal assignment
・ Von Neumann cellular automaton
・ Von Neumann conjecture
・ Von Neumann entropy
・ Von Neumann machine
・ Von Neumann neighborhood
・ Von Neumann paradox
・ Von Neumann programming languages
・ Von Neumann regular ring


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Von Mises–Fisher distribution : ウィキペディア英語版
Von Mises–Fisher distribution

In directional statistics, the von Mises–Fisher distribution (named after Ronald Fisher and Richard von Mises, is a
probability distribution on the (p-1)-dimensional sphere in \mathbb^. If p=2
the distribution reduces to the von Mises distribution on the circle.
The probability density function of the von Mises–Fisher distribution for the random ''p''-dimensional unit vector \mathbf\, is given by:
:
f_(\mathbf; \mu, \kappa)=C_(\kappa)\exp \left( \right)

where \kappa \ge 0, \left \Vert \mu \right \Vert =1 \, and
the normalization constant C_(\kappa)\, is equal to
:
C_(\kappa)=\frac I_(\kappa)}. \,

where I_ denotes the modified Bessel function of the first kind at order v. If p=3, the normalization constant reduces to
:
C_(\kappa)=\frac =\frac )}. \,

The parameters \mu\, and \kappa\, are called the ''mean direction'' and ''concentration parameter'', respectively. The greater the value of \kappa\,, the higher the concentration of the distribution around the mean direction \mu\,. The distribution is unimodal for \kappa>0\,, and is uniform on the sphere for \kappa=0\,.
The von Mises–Fisher distribution for p=3, also called the Fisher distribution, was first used to model the interaction of electric dipoles in an electric field (Mardia, 2000). Other applications are found in geology, bioinformatics, and text mining.
==Estimation of parameters==
A series of ''N'' independent measurements x_i are drawn from a von Mises–Fisher distribution. Define
:
A_(\kappa)=\frac . \,

Then (Sra, 2011) the maximum likelihood estimates of \mu\, and \kappa\, are given by
:
\mu = \frac ,

:
\kappa = A_p^(\bar) .

Thus \kappa\, is the solution to
:
A_p(\kappa) = \frac = \bar .

A simple approximation to \kappa is
:
\hat = \frac^2)} ,

but a more accurate measure can be obtained by iterating the Newton method a few times
:
\hat_1 = \hat - \frac})} ,

:
\hat_2 = \hat_1 - \frac}A_p(\hat_1)} .

For ''N'' ≥ 25, the estimated spherical standard error of the sample mean direction can be computed as
:\hat = \left(\frac\right)^
where
:d = 1 - \frac\sum_i^N (\mu^Tx_i)^2

It's then possible to approximate a 100(1-\alpha)\% confidence cone about \mu with semi-vertical angle
:q = \arcsin(e_\alpha^\hat)
, where e_\alpha = -\ln(\alpha).
For example, for a 95% confidence cone, \alpha = 0.05, e_\alpha = -\ln(0.05) = 2.996, and thus q = \arcsin(1.731\hat).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Von Mises–Fisher distribution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.