|
In directional statistics, the von Mises–Fisher distribution (named after Ronald Fisher and Richard von Mises, is a probability distribution on the -dimensional sphere in . If the distribution reduces to the von Mises distribution on the circle. The probability density function of the von Mises–Fisher distribution for the random ''p''-dimensional unit vector is given by: : where and the normalization constant is equal to : where denotes the modified Bessel function of the first kind at order . If , the normalization constant reduces to : The parameters and are called the ''mean direction'' and ''concentration parameter'', respectively. The greater the value of , the higher the concentration of the distribution around the mean direction . The distribution is unimodal for , and is uniform on the sphere for . The von Mises–Fisher distribution for , also called the Fisher distribution, was first used to model the interaction of electric dipoles in an electric field (Mardia, 2000). Other applications are found in geology, bioinformatics, and text mining. ==Estimation of parameters== A series of ''N'' independent measurements are drawn from a von Mises–Fisher distribution. Define : Then (Sra, 2011) the maximum likelihood estimates of and are given by : : Thus is the solution to : A simple approximation to is : but a more accurate measure can be obtained by iterating the Newton method a few times : : For ''N'' ≥ 25, the estimated spherical standard error of the sample mean direction can be computed as : where : It's then possible to approximate a confidence cone about with semi-vertical angle : where For example, for a 95% confidence cone, and thus 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Von Mises–Fisher distribution」の詳細全文を読む スポンサード リンク
|